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Motivation  
• The initial motivation for transitioning from 2G models to 3G models 

was that 1) the 2G models could not represent the nonlinear source 
term within its parameterizations and 2) the 2G models would have to 
be locally tuned for optimal performance. 
 

• Today’s 3G models are tuned holistically for optimal global 
performance; however, this does not ensure local optimality.  
Consequently, the need for tuning coefficients has not diminished.  
 

• Holistic tuning of 3G models has focused on comparisons to integrated 
spectral parameters (wave height, peak wave period and mean wave 
period). Comparisons to spectral shape have been subjective; however, 
recently a set of metrics for spectral comparisons has been proposed. 
 

• These metrics appear to reinforce the concept proposed by Hasselmann 
that nonlinear interactions control many aspects of spectral shape. 
 

• Here we examine the application of the Two Scale Approximation (TSA) 
to produce accurate spectral shapes and reliable detailed balance 
among source terms as required for accurate applications to couple 
modeling and remote sensing. (As shown by Yalin Fan on Monday) 



Overview 
       Our main goal is to build a model basis which can replicate 
the observed spectral metrics shown in Resio, Vincent and Ardag 
(2015). 
 
• Introduce spectral metrics and basic TSA approach. 

 

• Describe recent progress in the modified TSA. 
 

• Perform evolution tests for the modified TSA. 
 

• Compare the operational speed of the TSA with the Discrete 
Interaction Approximation (DIA). 
 

• Conclusions 
 



Spectral Metrics 
• 1. An equilibrium range with an extent that depends on wave age, 
• 2. A spectral peakedness defined in an context which depends on 

wave age, 
• 3. An equilibrium range coefficient which is consistent with the 

momentum balance entering the wave field and passing through the 
equilibrium range, 

• 4. A transition from to form at a location within the spectrum which 
varies as a function of wave age, 

• 5. A relaxation from a perturbation  that returns the spectrum to an 
appropriate equilibrium shape, 

• 6. An evolution of a spectrum  beyond the limit at which a fully-
developed wave height is achieved, and 

• 7. A bimodal directional distribution with the lobe angles and lobe 
ratios consistent with observations from spatio-temporal 
observations. 



C o u p l e d  M o d e l s  n e e d  A c c u ra t e  S p e c t ra / D e t a i l e d  B a l a n c e  
 
Transfer Function (Webb, 1978) : 

 

 

D is a function consisting of triplets of action densities: 

 

The TSA approach (Resio and Perrie 2008) : 
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Two Scale Approximation (TSA) 
Source term becomes: 

𝑺𝒏𝒏(𝒇,𝜽) = 𝑩 + 𝑳 + 𝑿 
 
New equation: 
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Action density 
triplets 

Pre-computed by 
using Full Boltzmann 
Integral (FBI) 
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Accuracy of a Broad Scale only Model 
• Broad Scale only models have been shown to be applicable with no tuning/limiting 

factor. Hanson et al.  (2009) applied this approach on Pacific scale and received 
relatively accurate results. (WAVAD/WISWAVE is based on the Resio and Perrie 
(1989) 1-parameters Snl – essentially a Broad Scale-only model with no basin-specific 
tuning) 
 

• We believe that ,for slowly varying winds, this approach can increase the efficiency 
of a model significantly, running it on Broad Scale a relatively high percentage of the 
time.  
 

• The initial TSA was operating with the same broad scale terms for evaluating 
conditions. 

 
 
 



Computational Speed 
• Broad scale is pre-computed, Local scale: 
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Initial values(Resio and Perrie 2008): 
Nk = Nf = 11 

Nθ=17 
 

Pre-computed matrices 



Input Spectra for Initial Testing 

Cases 
Relative 

Peakedness 

Frequency Location 

of the Perturbation 

(Hz) 

1 1.02 0.422 

2 1.02 0.513 

3 2.04 0.422 

4 2.04 0.513 



Input Spectrum for Initial Testing-
uncompensated form 

 

 

2 

3 4 



Case 1      Case 2 

 
 

Case 3      Case 4

 



Local Scale 

Local Scale Domain 

Perturbation on 21th frequency ring Perturbation on 25th frequency ring 

Case 1 Case 3 Case 2 Case 4 

3 Frequency & 3 Angle Bands 9% 12% 8% 4% 

3 Frequency & 5 Angle Bands 8% 11% 7% 4% 
4 Frequency 

& 3 Angle Bands 
8% 11% 7% 4% 

4 Frequency & 5 Angle Bands 7% 10% 6% 3% 

5 Frequency & 3 Angle Bands 8% 10% 6% 3% 

5 Frequency & 5 Angle Bands 7% 10% 5% 3% 

Initial Scale 8% 11% 6% 3% 

DIA 66% 106% 46% 32%  

17 11   12.5
5 3
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reduced

N
N

×
= ≈

×Table of Relative Errors 



• The FBI (right panel) and the TSA transition toward an f-4  
equilibrium form  

• The DIA (left pane) transitions toward an f-11/3 form. 



Problems with the Current Approach 

• “Flat top” pattern occurred due to frequency discretization.  
 

• Stability was difficult to maintain at high frequencies.  
 

• The original TSA was validated only for snapshots. Not 
evolutionary tests. 

  



Problems with the Current Approach 
“Flat top” pattern occurring due to discrete grids.  



Spectral Resolution 

- Using 72 angle bands instead of 36 affected the accuracy by 
decreasing the size of the angle increments by half and thus 
obliging us to use additional angle bins.  
 

- Among lambda values of 1.03, 1.05 and 1.07, a major 
dissimilarity was not observed. As long as fp fell on the 
discrete frequency grids, lambda of 1.07 performed 
sufficiently enough. 
 

- Increasing the resolution was accomplished in the “active” 
discrete element, in other words the discrete space which the 
fp is shifting at by introducing sub-increments. After some 
tests we decided to work with 5 sub-increments. 
 

 



Parametric Tail based on Irisov and Voronovich (2010) 

The f-4 equilibrium zone switches to a parametric f-5 form at a 
prescribed fti number representing a transition point relative to 

the peak frequency fp. 
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For simplicity in our tests we operated with an fti of: 



TSA for Time-stepping Cases 

• In our modified approach, we re-parametrize at the end of 
each time step. 
 

• So we are going to show 3 different cases; 
 
 
 

 
 
 
 
 
 

Cases 

Peak 

Frequency 

(Hz) 

Relative 

Peakedness 

(γr) 

Frequency Location of 

the Perturbation 

(Hz) 

1 0.1 0.75 - 

2 0.2 1.4 0.321 

3 0.3 2.4 0.481 



FBI       DIA 

   TSA    

DIA: 35.19 Seconds 
TSA: 68.80 Seconds 



FBI          DIA 

   TSA    

DIA: 16.33 Seconds 
TSA: 33.67 Seconds 



FBI       DIA 

   TSA    

DIA: 9.99 Seconds 
TSA: 19.23 Seconds 



FBI       DIA 

   TSA    

DIA: 9.99 Seconds 
TSA: 19.23 Seconds 



Conclusion 

• The modified TSA has a reduced window size 
which allows it to be as efficient as the DIA, 
sometimes even faster. With the modified form 
the TSA performed well over time evolution 
tests compared to the DIA. 
 

 
• Because of this the TSA will provide an improved 

basis for coupled models and remote sensing. 
 

 
 

 



Future Work 

-Operating the TSA on a Local Scale Domain that adds or skips 
some of the wave number space in order to increase efficiency 
and accuracy even more. 
 
 
-Operationalizing the modified TSA with appropriate 
parametrizations to use it with other source terms. 
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